

<u>Green Energy &</u> <u>Molecular Engineering Lab</u> (A-Group)

<u>Bio-Photonics &</u> Intelligent Vehicle Lab

(E, F-Groups)

Prof. Che-Wun Hong (洪哲文教授) Department of Power Mechanical Engineering National Tsing Hua University

 Academics: Quantum Mechanics, Molecular Dynamics, Lattice Boltzmann Dynamics, Computational Fluid Dynamics, System Dynamics, Dynamic System Control
Research : Fuel Cells, Li Batteries, Super-Capacitors, Thermo-Electric Chips, Quantum-Electrochemical Solar Cells, Organic LEDs, Combustion Engines, Turbochargers, Hybrid Electric Vehicles, Automotive Engineering

Academic Fundamentals

Research Area

Green Energy & Molecular Engineering Lab Objective: Direct energy conversion without pollutior Approach: Multi-scale simulation and design of green power engines from Quantum to Nano to Micro to Meso to Macro- Scales **Research Area:**

Proton \leftrightarrow Electron

Super-caps + Li Batteries

 $\underline{Phonon} \leftrightarrow \underline{Flectron}$

Ion $\leftarrow \rightarrow$ Electron

Copyright Reserved

(cers)

Bio-Photonics & Intelligent Vehicle Lab

Objective: Green power vehicle design and intelligent control Approach: Key component \rightarrow Device \rightarrow System \rightarrow Intelligent Control

Research Area:

Bio-Fuel Cells + Bio-Solar Cells + Organic Light Emitting Diodes

Batteries Engine Motor

Photo 1: Hybrid Electric Scooter

Cabin Air Conditioner (Solar Cells + Heat Pipes + Semiconductor Cooling Chips)

Plug-in Hybrid Electric Vehicle Design (Engine + Motor + Li-ion Battery + CVT)

Personal Mobility Electric Vehicle (Fuel Cell + Supercapacitors+ Battery)

Next Generation Green Power Engineering

Multi-scale Analysis and Design of Green Energy Engineering 多尺度綠能工程研究

Academic Fundamentals

Research Area

Catalytic Reduction in Low Temperature Fuel Cells

Oxygen Reduction Mechanism on Pt and Cu Catalyst Clusters

Oxygen Adsorption

First Proton Transfer

Oxygen Reduction Mechanism on Carbon Nano Tubes (CNTs)

O₂ Adsorption on Pt-absorbed and Pt-doped CNTs

First-Principles Computational Quantum Mechanics 第一原理-計算量子力學

Photoelectrochemical Solar Cells and BioSC

Photonic Characteristics of Quantum Dots on TiO2

(CdSe), Molecular Orbitals

(CdSe), Absorption on TiO₂

Photonic Characteristic of Biologic Pigments

Light Emitting Diodes (LEDs) and OLEDs

GaN Cluster Photonic Characteristics

Density of States (DOS)

OLED Photonic Characteristic

System Dynamics and Intelligent Control 系統動態與智慧控制

PEMFC System Dynamics and Intelligent Control

Elapsed Time (s)

, Time (s)

SOFC Micro APU System Dynamics and Control

Turbo SOFC/MGT Hybrid Generation System Start-up Control

